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An Asymptotic Expansion of Wk.m(z) with 

Large Variable and Parameters 

By R. Wong* 

Abstract. In this paper, we obtain an asymptotic expansion of the Whittaker function 
Wkm(z) when the parameters and variable are all large but subject to the growth restrictions 
that k = o(z) and m = o(zl'2) as z -A c. Here, it is assumed that k and m are real and 

larg z/I ? r - S. 

1. Introduction. In this paper, we are concerned with the asymptotic behavior 
of the Whittaker function Wkm(z). This function depends on two parameters and 
a variable. When the parameters k and m are fixed and the variable z is large, it is 
well known that a complete asymptotic expansion can be obtained; see [1, Section 7.1]. 
However, if the parameters k and m are allowed to increase without limit, the problem 
of finding asymptotic forms for Wk ,(z) becomes much more involved and has been 
the subject of numerous investigations; see Buchholz [1], Chang, Chu and O'Brien [2], 
Kazarinoff [7], Erdelyi and Swanson [5], Slater [8] and the references given there. 
Although a great number of papers have been written on this subject, the treatment 
with two parameters and a variable is still incomplete. 

In a recent paper [11], Wong and Rosenbloom have studied a certain inequality 
(see [4, p. 124]) connecting Whittaker functions and parabolic cylinder functions 
D-(z), and shown that this inequality can be improved considerably. However, the 
above-mentioned paper contains the restriction that k and m be again fixed. The 
purpose of this paper is to show that this condition can be relaxed so that k and m 
may depend on z. Moreover, we give a complete asymptotic expansion of Wkm(Z) 

when the parameters and the variable are all large, i.e., 

(1.1) k,m and z ->c 

but subject to the growth restrictions that 

(1.2) k = o(z) and m = o(z",2) asz -> co 

Here, it is supposed that k and m are real and larg zI < r - 6. The term "asymptotic" 
is used in the sense of Erd6lyi and Wyman [6], which is more general than the usual 
Poincare sense. This distinction is made clear in the theorems. 
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2. Two Auxiliary Results. It is well known that Hankel functions H,' (z) and 
H'2'(z) have the asymptotic expansions 

(2.1) Hp(Z) =() {m=0 (2 iz) + R } 

and 

(2.2) H = (- )2e(zv7r/2-r/4) {V (V m) + RV2) 
* 

_ \ / e 

t~~~~~~m = o (2 iz)mJ 

where 

1 {42 
- 
_I4v2 - 3} ... 4 - (2m - 1)2} 

(2.3) (v, m) - 22mm 

(2.4) (v, 0) = 1, 

and the remainders R`'> and Rg2) are both O(z-P) when v is a fixed number. For 
the results to be obtained, the following estimate is needed. 

LEMMA 1. Let arg z be restricted to the interval [-ir/2, 3ir/2], and v be a real- 
valuedfunction of z satisfying v = o(z"/2) as z -a co. Then, for i = 1 and 2, 

(2.5) R 
( ) = O f (v, p)/zp }, as z co. 

Proof. We suppose first that v ? 0 and Re z ? 0. Under these conditions, 
Weber [9, Section 7.33] showed that 

(2.6) JR(') ? 2G2 j(V, P)j Ir((2 )FP(2P + 1) ( = Is 2) P F~~~(lp + 1) 12zl' ( 1 ) 

where 

(2.7) G = v- 2) 1 (2 > 1) 

G = - ' + 3)v5/2( ? 2v + 2) (v <) 

and jzj = r. 
Since G is clearly bounded when 0 < v < 1 and r is sufficiently large, we may 

assume that 1 < v < r 12. A simple estimate then gives 

(2.8) (-v - 2) log(l - 1/2r"/2) ? (v + ')/r"12 < 3 

from which it follows that 

(2.9) G < (1 - 1/2r1/2)-v-l/2 < e3/2. 

Therefore, a constant A exists, which is independent of v and z, such that 

(2.10) JR(')| _ A. l(v, p)j1/zJP (i=1, 2), 

for all sufficiently large values of z. This is equivalent to (2.5). 
Since (v, p) is an even function of v, it follows from the identities [9, Section 3.61] 

(2.11) HM ,(z) = evriH(l)(z), H(2,)(z) = e-vrH 2)(Z) 
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and [9, Section 3.62] 

(2.12) H(' )(zetrl) = _(sYvrH (2)(Z) 

that the restrictions v ? 0 and Re z ? 0 are unnecessary. Therefore, inequality (2.10) 
holds for all real values of v and complex z restricted to the sector - 7r/2 ? arg z < 
37r/2, as long as v = o(z"/2) as z -> co. This completes the proof of Lemma 1. 

Remark. It should be observed that no hypothesis has been made in the estimates 
concerning the relative values of v and p; in this respect, Weber's result differs from 
that of Schlafli [9, Section 7.4] which was used in our previous paper [11]. 

In [6], Erdelyi and Wyman have given an elegant proof of a result from which it 
is easily deduced that the parabolic cylinder function D-x(z) has the generalized 
asymptotic expansion 

(2.13) zxe /4Dx(z) E(-1)n(X)2n . 2n 
n=O n! (2z) lAz)J 

as z -> co in jarg z < ir/2 - A, where X > 0 and X = o(z). The meaning of (2.11) is 

(2.14) zXez2/4 Dxjz) 
=N (_ 1)n(X)2n + ((X ~2N\ 

n=O n!(2z )z 

as z -* co, for every fixed integer N > 0, where the o-symbol is independent of X 
and z. Unfortunately, they proved the result only for X > 0, while, for our results, 
we want to use all real values of X. Although the conditions X > 0 and jarg zI < 
r/2 - A in (2.13) can be easily weakened to larg XI < 7r/2 - A and jarg zI < 3ir/2 

- A, their proof does not seem readily adapted to extensions allowing X to be negative. 
The following lemma shows that the condition X > 0 is indeed unnecessary. 

LEMMA 2. The result in (2.13) is true if "X > 0" is replaced by "X real". 
Proof. We start with the contour integral representation 

(2.15) e D-x(z) - - -) (+ -le- t dt 
2iri Jo 

where the path of integration starts at + co, goes around the origin once in the 
positive direction and returns to + co. The integrand is rendered one-valued by 
taking -ir < arg (-t) < ir. 

Since it has already been shown that (2.13) holds when X is finite or X > 0 but 
X = o(z), we shall assume that X is large and negative. Let rN(t), N = 0, 1, 2, , be 
defined by the relation 

t 2/2 l )nt2n 

(2.16) e = E n + rN(t) 
n=0 n 

It is evident that, if t is restricted to the path of integration, a constant BN can be 
found such that 

(2.17) IrN(t)I < BN Itl2N+2. 

Substituting (2.16) in (2.15) and integrating term by term, we obtain 

(2.18) eZ/4 D(z) = 
N 

(_)(X)2n-(X+2n) + F( X)EN(X, Z), 
n=0 2.fl!- 
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where 
(0+ ) 

IEN()X, Z) | S |(t)x rN(t)e ' d t| 
(2.19) 

< fN J0+) ItX+2N+le zt dtl 

by (2.17). Since X is negative, the transformation zt = (-X)r gives 

(j+) it e +2N+2 (+ 
(2.20) az2N 

t dtl = Z I +2N+leXT d I 

when z is real and positive. It is not difficult to see that (2.20) in fact holds when 

larg zj < 7r/2. Hence, 
(2X+2N+2 BN (O+) 2N+1X(T+logT) 

(2.21) Z |EN(X, Z)l <-I 172le\ ) dI z 

valid when X < 0 and jarg zj < ir/2- A. To the last integral, we apply the method 
of steepest descents [3, Section 30]. Hence, 

(0+) 

(2.22) j 1 2N+ X(-log T) dT | e-[- 7r/2X]12 

as X -> - co. Coupling the results (2.21) and (2.22), we obtain 

(2.23) zXEN(X, Z) = 0 f (_X/Z)2N+2e 

as z -* co in jarg zj ?< r/2 - A, where the 0-symbol is independent of X and z. 

Finally, by Stirling's formula 

(2.24) (1 - X)Z"EN(X, Z) = O{(X/Z)2N+2} 

and so the lemma is established. 
Remark. The above analysis can be used to give similar expansions for the 

derivatives of D-x(z) with respect to z. In particular, we have 

(2.25) D_1(z) ( l)zl1Xe- 
Z2/4 as z -co in arg zI ?< r/2- 6 

where X is real and X = o(z). 

3. Main Theorem. It is known that the Whittaker function has the integral rep- 
resentation [1, Section 5.3] 

(3.1) Wk, m(Z2) = zez2/2+ (m+l/2-k) ri f eUH2(2zu)u2k du, 
_co 

where the path of integration runs from - co to co and passes above the singularity 
at the origin. If we substitute (2.1) for H21, we obtain 

(3.2) Wk,(Z2) = 21//Z t (2TV2)r D2k-r-1/2(z-\/2) + Ej(z)} 

where the remainder is given by 
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(3.3) E (z) = - 2k-1/4 (1/4-k) 7ri+z2/2 f e-u2+2izu 2k-1/2R(l)(2 ) du 
-\/7r _co 

This result is well known [4, p. 124]. When k and m are fixed, it was shown in [11, (3.1)] 
that E,(z) = O(e-Z2/2z2k-2P-lZ2), uniformly in arg z, as z -> co in larg z ? ir/4 - 

When k and m are functions of z, we have the following lemma. 
LEMMA 3. Let k and m be real-valued functions of z for which k = o(z) and 

m = o(z1/2) as Jz- co. If Iml ? 6 > 0 then 

(3.4) Ep(z) = Of 2kz2k-1/2e-z2/2(M/Z)2vl 

If Iml < 6 then 

(3.5) Ep(z) = O 2 ke Z2/2z2k-2p-1/21 

Both results hold uniformly in arg z, as z -> co in larg z ?< r/2 - A, and the constants 
implied in 0-symbols are independent of k, m, and z. 

Proof. Returning to (3.3), we let 
oa 

(3.6) = f eu2+2izuu2k-l/2R(l)(2zu) du. 
_co 

In [11], it was shown that by a change of variable u = zu' followed by a deformation 
of the contour, 

(3.7) I = z2k +1/2 f -z2(X2+l)(x + )2k-1/2R(l)(2(x + i)) dx, 

the path of integration now being a straight line joining - co to co. By Lemma 1, 

(3.8) I'l ? A. 1(2m, p)I le-zZ2k-2P+l/2I J 

where 

(3.9) J = f lex(x + i)2k-P-l/2 dx 
co 

and the constant A. depends only on p. Since x is real, we have Ix + il _ 1, and so 

(3.10) J < 2 e (Rez2)x2(X2 + 1)k dX. 

We consider separately the cases k ? 0 and k > 0. 
When k < 0, 

co \1/2 
(3.11) J < 2 e-(Rez2)x2 dx = R 

Hence, J = O(z-7) for z restricted to Iarg zl < ir/4- A. 
When k > 0, 

00 
(3.12) J _ 2 f e (lez2-k)x2 dX 

provided that the integral exists. Since k = o(z) as -z* co, 
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(3.13) Re(z) - k = 1z12 cos(argz2) -k > 1Z12 X 

for sufficiently large z in the sector jarg zj ? 7r/4- A, where 77k is a positive finite 
number and independent of Izi. Therefore, we again have J = O(z-1), as z -* co in 
arg zj ? 7r/4 - A. 

We have thus proved that a constant Al exists such that 

(3.14) 1Il ? A' 1(2m, p)e-z`z2k-2P-l/2 

for large values of z in jarg zj ? r/4 - A. The region of validity can be extended to 
larg zI ? ir/2 - A by a standard argument. We rotate the path of integration in (3.7) 
through an arbitrary angle y, where - r/4 < y < 7r/4. When z is positive, use of 
Cauchy's theorem easily shows that (3.7) is valid if the upper and lower limits are 
replaced by oe " and - co e " respectively. With this change, (3.7) holds when 
jarg (zet7)j < ir/4 - A. A repetition of the proof (with some slight modifications) 
then shows that (3.14) is also valid in this angle. By varying -y, it follows that (3.14) 
holds when jarg zl < 7r/2 - A. 

Since EP(z) = (1/-v/7r)2k- l/4e(l/4-k) 7r+Z2/2I by (3.14), 

(3.15) Ep(z) = O{ 2k(2 m, p)e-Z2/2z2k-2l-1/2} 

for all large values of z restricted to the sector larg zI < ir/2 - A. When Iml < 8, 
(3.15) is certainly equivalent to (3.5). When Iml > 6 > 0, (3.4) follows from (3.15) in 
view of the fact that (2m, p) - (2m)2P/p !. 

MAIN THEOREM. Let k and m be real-valued functions of z satisfying conditions 
(1.1) and (1.2). Then, for any N 0 O. 

2k-1/4 Wk(Z) D2k-1/2((2z ) + om 
(3.16) z s=o Z 

+Dlk12 i?((2z)1/2) [N 

2 
2N+ 

as z -> co in larg zj < r - 8, uniformly with respect to arg z. The coefficients a, and b, 
depend on k and m, and are explicitly given in (3.24). 

Proof. Clearly, { (m2/z)2,1 is an asymptotic sequence under the hypothesis 
m = o(z"/2) as Izi -> co. Let N be an arbitrary but fixed positive integer, and set 
(3.17) S= 2N+2 (2 m,r) 

r=O (2(2z)l/) 

The following lemma is given in [10]. 
LEMMA. For each r ? 0 we have 

(3.18) (-l)r_ )r Dx r(Z) = Dx(Z)Pr(Z) + D((Z)Qr-i(Z) 

where P r(z) and Q r- 1(z) are polynomials of the form 
[r/21 

(3.19) Pr(Z) = E Pr sz s 
s =o 

[ (r- 1)/21 

(3.20) Qr-I(Z) = qizr-(2s+1 
s=O 
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The coefficients pr, and qv-,, can be successively determined from the recurrence 
relations 

(3.21) Pr+i(Z) = zPr(z) + (-X + r - )Pr-1(z) 

(3.22) Qr(z) = zQr,-(Z) + (-X + r l)Qr-2(Z), 

with P0(z) = 1, P1(z) = z/2, Q-l(z) = 0 and Q0(z) = 1. 
Now, let kl ? N+ 1 sothat2k - 1 5 o0,,I .. 2N+ 1, and hence (-2k), 

5 0 for r = 0, 1, , 2N + 2. It follows from (3.17) that the sum S can be rearranged 
in the form 

N+1 N 

(3.23) S = D2k-l/2((2z)12) E 
a 

+ D'kl1/2((2z)12) z: si 
s=O z s=O z 

where 

2N+2 (-1 ) (2m, r) 

(3.24) 2 rs 22 2k)r and 

2s+1/2 2N+2 ( )r (2 m, r) 

2 r 2 
Pl 2 ( - 2k)r 

Therefore 
f ~~~N+1 

1/4k 1-k/4/f(, /2 N a. 
Wk,.m(Z) =2 z D2 k - l/2((2z)l E S 

(3.25) s=O Z 

+ D'k-1/2((2z) 2) E bs E2N+3('\IZ) 

for any fixed integer N > 0. 
Now, it only remains to consider the remainder E2N+3. By Lemmas 2 and 3, we have 

(3.26) E2N+3(x/z) Of (M2/Z)2N+3 D=((2z)l/2)} 

and, similarly, 

(3.27) E2N+3( \/Z) = 0 {(m2/z)2N+3 z/2 D2k-1/2((2z) /2)} 

by (3.26). Both results hold uniformly with respect to arg z, as z co in jarg zl < 

r- 6. 

We have thus proved that, for any integer N _ 0, 

(k-1/4 Wkm(Z) D2k-1/2((2z)l) [N+ a + ( )+}] 

(3.28) ~" _ +I 

+Dlkl1/2((2z)l /2) N bs + {(2)2N+3} + 1l/4 [E -S + ?{ )0 

as z -> co in jarg zl ? irx 6, uniformly with respect to arg z, which certainly implies 
the required result. 
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